Methods of Differentiation

IMPORTANT

Methods of Differentiation: Overview

This topic covers concepts such as Methods of Differentiation, Differentiation by Substitution, Derivative of Infinite Series, Logarithmic Differentiation, Derivative of Inverse Function, Differentiation of Parametric Equations, etc.

Important Questions on Methods of Differentiation

EASY
IMPORTANT

If lnx+y=2xy, then y'0 is equal to

EASY
IMPORTANT

If x 2 + y 2 = 1,   then :

HARD
IMPORTANT

If f x = cos x + x 2 sin x + x 2 - cos x + x 2 sin x - x 2 cos x - x 2 sin x - x 2 sin 2 x 0 sin 2 x 2 then, find  f x

MEDIUM
IMPORTANT

If f x = x - a 4 x - a 3 1 x - b 4 x - b 3 1 x - c 4 x - c 3 1 then f x = λ · x - a 4 x - a 2 1 x - b 4 x - b 2 1 x - c 4 x - c 2 1 · Find the value of λ

MEDIUM
IMPORTANT

A twice differentiable function f(x) is defined for all real numbers and satisfies the following conditions, f0=2;  f'0=-5 and f''0=3. The function g(x) is defined by g(x)=eax+fxxR, where a is any constant. If g'(0)+g"(0)=0. Then a can be equal to 

HARD
IMPORTANT

Letfx=x+12x+12x+12x+ Then the value of f(100)·f'(100) is 

HARD
IMPORTANT

Differentiate 1+x2+1-x21+x2-1-x2 w .r. t. 1-x4

MEDIUM
IMPORTANT

If y=logexex·ayyx, then dydx is equal to

HARD
IMPORTANT

If  y=cos13x+41x25, then   dy dx is:

MEDIUM
IMPORTANT

If   y= sin 1 x 1 x 2 ,  then 1x2d2ydx23xdydxy is equal to:

MEDIUM
IMPORTANT

If   siny=xsin(a+y),  find   dy dx

HARD
IMPORTANT

The length x of a rectangle is decreasing at the rate of   5cm/minute  and the width y is increasing at the rate of   4cm/minute  When   x=8cmandy=6cm,  the rate of change of (a) the perimeter, b the area of the rectangle would be:

MEDIUM
IMPORTANT

If  x=acost+tsint and  y=asinttcost, 0<t<π2. The value of   d2ydx2 would be:

EASY
IMPORTANT

On differentiating   tan 1 [ 1+ x 2 1 x ] with respect to x, the result would be

HARD
IMPORTANT

If   y= tan 1 [ 1+ x 2 1 x 2 1+ x 2 + 1 x 2 ],  what would be dydx

EASY
IMPORTANT

Derivative of tan-12x1-x2 with respect to sin-12x1+x2 in 1,, is

MEDIUM
IMPORTANT

The derivative of asecx w.r.t. atanx a>0 is

MEDIUM
IMPORTANT

If x=cos3θ and y=sin3θ, then 1+dydx2 is equal to

HARD
IMPORTANT

The derivative of tan-1sinx-cosxsinx+cosx with respect to x2, where x0,π2, is